mastodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance, open to everyone, but mainly English and French speaking.

Administered by:

Server stats:

738
active users

#segmentation

0 posts0 participants0 posts today
Rafagas Links<p>OmniCloudMask is a Python library for state-of-the-art segmentation of clouds and cloud shadows in high- to moderate-resolution satellite imagery <a href="https://en.osm.town/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a></p><p><a href="https://github.com/DPIRD-DMA/OmniCloudMask" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/DPIRD-DMA/OmniCloud</span><span class="invisible">Mask</span></a></p>
Fabrizio Musacchio<p>Tried the same with a more realistic 3D stack from the <a href="https://sigmoid.social/tags/ImageJ" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ImageJ</span></a> sample library.<a href="https://sigmoid.social/tags/Cellpose" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Cellpose</span></a> runs fast and segments very well out of the box.<a href="https://sigmoid.social/tags/CellSeg3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CellSeg3D</span></a> takes considerably longer and seems to segment decently, but I couldn’t get a proper instance <a href="https://sigmoid.social/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a> in the post-processing step (which is recommended as part of its workflow). However, <a href="https://sigmoid.social/tags/CellSeg3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CellSeg3D</span></a> looks very promising — just needs some more time and parameter exploration, I guess. </p><p>I’d recommend giving it a try 👌</p>
Fabrizio Musacchio<p>✍️ New in <a href="https://sigmoid.social/tags/eLife" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>eLife</span></a>: <a href="https://sigmoid.social/tags/CellSeg3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CellSeg3D</span></a> introduces <a href="https://sigmoid.social/tags/WNet3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WNet3D</span></a>, a self-supervised 3D <a href="https://sigmoid.social/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a> method for <a href="https://sigmoid.social/tags/microscopy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>microscopy</span></a> data — no labels needed. Claims to outperform <a href="https://sigmoid.social/tags/Cellpose" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Cellpose</span></a>/#StarDist on 4 datasets. Includes <a href="https://sigmoid.social/tags/opensource" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>opensource</span></a> plugin (<a href="https://sigmoid.social/tags/Napari" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Napari</span></a>) + full 3D annotated <a href="https://sigmoid.social/tags/cortex" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cortex</span></a> dataset. Will test it later. </p><p>🌍 <a href="https://elifesciences.org/articles/99848" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">elifesciences.org/articles/998</span><span class="invisible">48</span></a></p><p><a href="https://sigmoid.social/tags/DeepLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DeepLearning</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Neuroscience</span></a></p>
Rafagas Links<p>Semantic segmentation of historical maps using self-constructing graph convolutional networks to interpret and extract information <a href="https://en.osm.town/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a></p><p><a href="https://www.tandfonline.com/doi/full/10.1080/15230406.2025.2468304" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">tandfonline.com/doi/full/10.10</span><span class="invisible">80/15230406.2025.2468304</span></a></p>
nf-core<p>Pipeline release! nf-core/molkart v1.1.0 - 1.1.0 - Resolution Road!</p><p>Please see the changelog: <a href="https://github.com/nf-core/molkart/releases/tag/1.1.0" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/nf-core/molkart/rel</span><span class="invisible">eases/tag/1.1.0</span></a></p><p><a href="https://mstdn.science/tags/fish" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fish</span></a> <a href="https://mstdn.science/tags/imageprocessing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>imageprocessing</span></a> <a href="https://mstdn.science/tags/imaging" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>imaging</span></a> <a href="https://mstdn.science/tags/molecularcartography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>molecularcartography</span></a> <a href="https://mstdn.science/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a> <a href="https://mstdn.science/tags/singlecell" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>singlecell</span></a> <a href="https://mstdn.science/tags/spatial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatial</span></a> <a href="https://mstdn.science/tags/transcriptomics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>transcriptomics</span></a> <a href="https://mstdn.science/tags/nfcore" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nfcore</span></a> <a href="https://mstdn.science/tags/openscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>openscience</span></a> <a href="https://mstdn.science/tags/nextflow" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nextflow</span></a> <a href="https://mstdn.science/tags/bioinformatics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bioinformatics</span></a></p>
feitgemel<p>How to segment X-Ray lungs using U-Net and Tensorflow</p><p>You can find link for the code in the blog : <a href="https://eranfeit.net/how-to-segment-x-ray-lungs-using-u-net-and-tensorflow/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">eranfeit.net/how-to-segment-x-</span><span class="invisible">ray-lungs-using-u-net-and-tensorflow/</span></a></p><p>Check out our tutorial here : <a href="https://youtu.be/-AejMcdeOOM&amp;list=UULFTiWJJhaH6BviSWKLJUM9sg" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">youtu.be/-AejMcdeOOM&amp;list=UULF</span><span class="invisible">TiWJJhaH6BviSWKLJUM9sg</span></a></p><p>Enjoy<br>Eran</p><p><a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/openCV" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>openCV</span></a> <a href="https://mastodon.social/tags/TensorFlow" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TensorFlow</span></a> <a href="https://mastodon.social/tags/ImageSegmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ImageSegmentation</span></a> <a href="https://mastodon.social/tags/Unet" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Unet</span></a> <a href="https://mastodon.social/tags/Resunet" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Resunet</span></a> <a href="https://mastodon.social/tags/Segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Segmentation</span></a></p>
💧🌏 Greg Cocks<p>Segment Anything Model Can Not Segment Anything - Assessing AI Foundation Model’s Generalizability In Permafrost Mapping<br>--<br><a href="https://doi.org/10.3390/rs16050797" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">doi.org/10.3390/rs16050797</span><span class="invisible"></span></a> &lt;-- shared paper<br>--<br><a href="https://techhub.social/tags/GIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GIS</span></a> <a href="https://techhub.social/tags/spatial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatial</span></a> <a href="https://techhub.social/tags/mapping" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mapping</span></a> <a href="https://techhub.social/tags/remotesensing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>remotesensing</span></a> <a href="https://techhub.social/tags/foundationmodel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>foundationmodel</span></a> <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/artificialintelligence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>artificialintelligence</span></a> <a href="https://techhub.social/tags/zeroshot" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>zeroshot</span></a> <a href="https://techhub.social/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a> <a href="https://techhub.social/tags/GeoAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GeoAI</span></a> <a href="https://techhub.social/tags/spatialanalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatialanalysis</span></a> <a href="https://techhub.social/tags/LargeLanguageModel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LargeLanguageModel</span></a> <a href="https://techhub.social/tags/LLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLM</span></a> <a href="https://techhub.social/tags/SAM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SAM</span></a> <a href="https://techhub.social/tags/performance" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>performance</span></a> <a href="https://techhub.social/tags/metrics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>metrics</span></a> <a href="https://techhub.social/tags/permafrost" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>permafrost</span></a> <a href="https://techhub.social/tags/visionmodel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>visionmodel</span></a> <a href="https://techhub.social/tags/icewedge" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>icewedge</span></a> <a href="https://techhub.social/tags/Arctic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Arctic</span></a> <a href="https://techhub.social/tags/warming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>warming</span></a> <a href="https://techhub.social/tags/climatechange" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>climatechange</span></a> <a href="https://techhub.social/tags/thawslumps" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>thawslumps</span></a> <a href="https://techhub.social/tags/landform" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>landform</span></a> <a href="https://techhub.social/tags/terrainmapping" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>terrainmapping</span></a> <a href="https://techhub.social/tags/EuroCrops" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EuroCrops</span></a> <a href="https://techhub.social/tags/agriculture" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>agriculture</span></a></p>
ALTA<p>In the lead up to <a href="https://sigmoid.social/tags/ALTA2024" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ALTA2024</span></a>, we're highlighting <a href="https://sigmoid.social/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a> papers from previous <a href="https://sigmoid.social/tags/workshops" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>workshops</span></a>. </p><p>Here, the ChatGPT C-LARA-Instance, Belinda Chiera, Cathy Chua, Chadi Raheb, Manny Rayner, Annika Simonsen, Zhengkang Xiang, and Rina Zviel-Girshin use the <a href="https://sigmoid.social/tags/OpenSource" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenSource</span></a> <a href="https://sigmoid.social/tags/CLARA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CLARA</span></a> platform to evaluate <a href="https://sigmoid.social/tags/GPT4" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GPT4</span></a>'s ability to perform <a href="https://sigmoid.social/tags/linguistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linguistics</span></a> <a href="https://sigmoid.social/tags/NLP" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NLP</span></a> tasks such as <a href="https://sigmoid.social/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a>, <a href="https://sigmoid.social/tags/lemmatization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>lemmatization</span></a> and <a href="https://sigmoid.social/tags/glossing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glossing</span></a>. </p><p>🔗 C-LARA platform: <a href="https://www.c-lara.org/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">c-lara.org/</span><span class="invisible"></span></a></p><p>🔗 Paper: <a href="https://aclanthology.org/2023.alta-1.3/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">aclanthology.org/2023.alta-1.3</span><span class="invisible">/</span></a></p>
Rafagas Links<p>DetectTree is a Python library that uses semantic segmentation to classify whether pixels in aerial images contain a tree. The library includes a pre-trained model via martibosch at X <a href="https://en.osm.town/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a></p><p><a href="https://github.com/martibosch/detectree" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/martibosch/detectre</span><span class="invisible">e</span></a></p>
JCLS<p>Not on novels, but on Holocaust survivor testimonials: </p><p>Eitan Wagner, Renana Keydar, Amir Pinchevski &amp; Omri Abend (2023). "Automatic Topic-Guided Segmentation of Holocaust Survivor Testimonies", Journal of Computational Literary Studies 2 (1), 1–26. doi: <a href="https://doi.org/10.48694/jcls.3580" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">doi.org/10.48694/jcls.3580</span><span class="invisible"></span></a>. </p><p>Keywords: <a href="https://fedihum.org/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a>, <a href="https://fedihum.org/tags/spoken" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spoken</span></a> narratives, <a href="https://fedihum.org/tags/testimonies" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>testimonies</span></a>, <a href="https://fedihum.org/tags/narrative" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>narrative</span></a> analysis, <a href="https://fedihum.org/tags/topic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>topic</span></a> analysis, mutual information, <a href="https://fedihum.org/tags/NLP" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NLP</span></a> <a href="https://fedihum.org/tags/CLS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CLS</span></a> <a href="https://fedihum.org/tags/JCLS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>JCLS</span></a></p>
Robin Wilson<p>Have you wanted to use segment-geospatial (<a href="https://samgeo.gishub.org/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">samgeo.gishub.org/</span><span class="invisible"></span></a>) on Microsoft Planetary Computer and struggled? My blog post shows the simple solution: <a href="https://blog.rtwilson.com/how-to-get-segment-geospatial-working-on-microsoft-planetary-computer/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blog.rtwilson.com/how-to-get-s</span><span class="invisible">egment-geospatial-working-on-microsoft-planetary-computer/</span></a></p><p><a href="https://mastodon.me.uk/tags/python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>python</span></a> <a href="https://mastodon.me.uk/tags/ml" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ml</span></a> <a href="https://mastodon.me.uk/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a> <a href="https://mastodon.me.uk/tags/PlanetaryComputer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PlanetaryComputer</span></a> <a href="https://mastodon.me.uk/tags/geospatial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geospatial</span></a> <a href="https://mastodon.me.uk/tags/gis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>gis</span></a></p>
Sally Lowell<p>... further to the above, if anyone would like to explain in 500 characters or less, why a caterpillar has more than six legs then I'll grade their micro-essay for them.</p><p><a href="https://biologists.social/tags/DevBio" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DevBio</span></a> <a href="https://biologists.social/tags/Entomology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Entomology</span></a> <a href="https://biologists.social/tags/Segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Segmentation</span></a> <a href="https://biologists.social/tags/Friday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Friday</span></a></p>
Michel Mariani<p>Unicopedia Plus is a developer-oriented set of Unicode, Unihan, Unikemet &amp; emoji utilities wrapped into one single app, built with <a href="https://mastodon.social/tags/Electron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Electron</span></a>.</p><p>Repository: 🔗 <a href="https://codeberg.org/tonton-pixel/unicopedia-plus" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">codeberg.org/tonton-pixel/unic</span><span class="invisible">opedia-plus</span></a></p><p><a href="https://mastodon.social/tags/characters" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>characters</span></a> <a href="https://mastodon.social/tags/chinese" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>chinese</span></a> <a href="https://mastodon.social/tags/cjk" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cjk</span></a> <a href="https://mastodon.social/tags/codepoints" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>codepoints</span></a> <a href="https://mastodon.social/tags/desktopapplication" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>desktopapplication</span></a> <a href="https://mastodon.social/tags/electronjs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>electronjs</span></a> <a href="https://mastodon.social/tags/emoji" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>emoji</span></a> <a href="https://mastodon.social/tags/ivd" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ivd</span></a> <a href="https://mastodon.social/tags/japanese" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>japanese</span></a> <a href="https://mastodon.social/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mastodon.social/tags/kangxi" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kangxi</span></a> <a href="https://mastodon.social/tags/kangxiradicals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kangxiradicals</span></a> <a href="https://mastodon.social/tags/korean" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>korean</span></a> <a href="https://mastodon.social/tags/normalization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>normalization</span></a> <a href="https://mastodon.social/tags/opensource" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>opensource</span></a> <a href="https://mastodon.social/tags/regex" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>regex</span></a> <a href="https://mastodon.social/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a> <a href="https://mastodon.social/tags/strokecount" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>strokecount</span></a> <a href="https://mastodon.social/tags/unicode" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>unicode</span></a> <a href="https://mastodon.social/tags/unicopedia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>unicopedia</span></a> <a href="https://mastodon.social/tags/unihan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>unihan</span></a> <a href="https://mastodon.social/tags/unikemet" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>unikemet</span></a></p>
Bill Taroli :neurodiversity:<p>I've been on the search for a <a href="https://federate.social/tags/mesh" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mesh</span></a> <a href="https://federate.social/tags/WiFi" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WiFi</span></a> option that supports multiple SSID associated to tagged <a href="https://federate.social/tags/VLAN" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>VLAN</span></a>, which span into the LAN. I do this now with <a href="https://federate.social/tags/FreshTomato" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FreshTomato</span></a> to my <a href="https://federate.social/tags/pfSense" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pfSense</span></a> router. But I need better WiFi coverage. </p><p>So far, it's looking like <a href="https://federate.social/tags/OrbiPro" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OrbiPro</span></a> and <a href="https://federate.social/tags/DrayTek" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DrayTek</span></a> devices do this, but one isn't high on my expectations list and one isn't easily acquired in the US. So I'm trying the Orbi Pro and we'll see...</p><p><a href="https://federate.social/tags/HomeNetworking" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HomeNetworking</span></a> <a href="https://federate.social/tags/security" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>security</span></a> <a href="https://federate.social/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a></p>
Classe débrouillards<p><a href="https://mastodon.twictee.org/tags/Transfert" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Transfert</span></a> <a href="https://mastodon.twictee.org/tags/Twict%C3%A9e" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Twictée</span></a> <a href="https://mastodon.twictee.org/tags/Majuscule" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Majuscule</span></a> <a href="https://mastodon.twictee.org/tags/Segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Segmentation</span></a> <a href="https://mastodon.twictee.org/tags/Ponctuation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Ponctuation</span></a> Bravo la <a href="https://mastodon.twictee.org/tags/TeamCP" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TeamCP</span></a></p>
Classe débrouillards<p><a href="https://mastodon.twictee.org/tags/Transfert" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Transfert</span></a> <a href="https://mastodon.twictee.org/tags/Twict%C3%A9e" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Twictée</span></a> <a href="https://mastodon.twictee.org/tags/Segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Segmentation</span></a> <a href="https://mastodon.twictee.org/tags/TeamCP" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TeamCP</span></a></p>
Niklas Alt<p>Hi fediverse, is anyone aware of <a href="https://fedihum.org/tags/opensource" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>opensource</span></a> pipelines for <a href="https://fedihum.org/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a> / <a href="https://fedihum.org/tags/vectorization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>vectorization</span></a> of <a href="https://fedihum.org/tags/historical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>historical</span></a> <a href="https://fedihum.org/tags/cadastral" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cadastral</span></a> maps? Ideally a workflow to train <a href="https://fedihum.org/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> / <a href="https://fedihum.org/tags/ML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ML</span></a> models on specific mapsets, e.g. the new prussian survey after 1870*, the francisceian (mid 19th century) or the bavarian*** to only mention the largest surveys in central Europe. I suspect that people outside of history are working on it, these maps are a true treasure for <a href="https://fedihum.org/tags/environmental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>environmental</span></a> and <a href="https://fedihum.org/tags/biodiversity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>biodiversity</span></a> research. Links are in the reply</p>
Oliver Mantell<p>A new role with the University of Leicester (in partnership with us at The Audience Agency) looking at how <a href="https://zirk.us/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> can support cultural <a href="https://zirk.us/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a>: <a href="https://jobs.le.ac.uk/vacancies/8889/data-scientist-for-cultural-audience-segmentation-ktp-associate.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jobs.le.ac.uk/vacancies/8889/d</span><span class="invisible">ata-scientist-for-cultural-audience-segmentation-ktp-associate.html</span></a></p><p>It is, of course, potentially a huge can of worms (!), but I'm hoping it will enable greater nuance, flexibility, learning and local/sector specificity - as well as more robust evidence of what works... (and done with partners who place social value and impact first).</p>
Anita Graser 🇪🇺🇺🇦🇬🇪<p>RT <span class="h-card"><a href="https://fosstodon.org/@giswqs" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>giswqs</span></a></span> segment-geospatial v0.6.0 sneak peek - Interactive <a href="https://fosstodon.org/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a> of <a href="https://fosstodon.org/tags/remotesensing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>remotesensing</span></a> <a href="https://fosstodon.org/tags/imagery" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>imagery</span></a> without coding. Segmentation results can be saved as GeoTIFF and vector data formats</p><p><a href="https://github.com/opengeos/segment-geospatial/pull/44" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/opengeos/segment-ge</span><span class="invisible">ospatial/pull/44</span></a></p><p><a href="https://fosstodon.org/tags/geospatial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geospatial</span></a> <a href="https://fosstodon.org/tags/segmentanything" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentanything</span></a> <a href="https://fosstodon.org/tags/eo" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>eo</span></a> <a href="https://fosstodon.org/tags/gischat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>gischat</span></a></p>
Rafagas Links<p>Segment Anything Model (SAM) is a fast system to classify any object from any image without previous training automatically, and it works reasonably well on aerial imagery <a href="https://en.osm.town/tags/segmentation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>segmentation</span></a></p><p><a href="https://segment-anything.com/" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="">segment-anything.com/</span><span class="invisible"></span></a></p>